If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-202.8x+623.7=0
a = 12; b = -202.8; c = +623.7;
Δ = b2-4ac
Δ = -202.82-4·12·623.7
Δ = 11190.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-202.8)-\sqrt{11190.24}}{2*12}=\frac{202.8-\sqrt{11190.24}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-202.8)+\sqrt{11190.24}}{2*12}=\frac{202.8+\sqrt{11190.24}}{24} $
| (2n+10)/3=7 | | 4x+10=x-90 | | 18c-15c-2c-1=11 | | 3(y+12)=93 | | 11-(x/6)=-11 | | -11-9y=-10y | | 9+3x+5x-x=4x+25-x | | 5(3-y)-12,5=0 | | -8x+5=3x+15 | | 88=-8(4y-3) | | -9v+5+6v=-5v-19 | | 6s-26=124 | | 2y+2y+y=58 | | 24x=19992 | | -13.09+7.1r=19r | | 23x+17=-15-21 | | 8(8+6)=7(7+x) | | 16p-9p=7 | | 2m1+148=180 | | -20-9u=19-6u | | 92+y=180 | | 9+10x=3-x | | (4x+1)^2+9(4x+1)=-18 | | 13h-13h+6h=18 | | 3=3h-3 | | 14+12n=11n | | 4/3x(x+8)=24 | | 92+y=149 | | 17+2t-18t=-19-20t | | 9x-12=39 | | 48=4(5y+2) | | -4-c=-3(2c-6)+3c |